Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy.

نویسندگان

  • Sahil Inamdar
  • Karthik Pushpavanam
  • Jarrod M Lentz
  • Martin Bues
  • Aman Anand
  • Kaushal Rege
چکیده

Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristic of protons, which results in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Currently available dosimeters are intrinsic, complex, and expensive and are not routinely used to determine the dose delivered to the tumor. Here, we report a hydrogel-based plasmonic nanosensor for detecting clinical doses used in conventional and hyperfractionated proton beam radiotherapy. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during proton treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime, and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton beam dosimetry by CR-39 track-etched detector

Background: High and intermediate energy protons are not able to form a track in a solid state nuclear track detector (SSNTD) directly. However, such tracks can be formed through secondary particles created during primary radiation nuclear reactions in a SSNTD. Materials and Methods: The protons with primary energies of 9.6 and 30 MeV available at the cyclotron accelerator with corresponding lo...

متن کامل

Proton Therapy of eye using MCNPX code

Introduction: Proton radiotherapy is the one of advanced teletherapy methods. The protons deposit their maximum energy in a position called Bragg peak. Therefore, for treatment of cancer, the tumor should be placed at the Bragg peak or SOBP. The scattered photons and neutrons is a challenge in proton radiotherapy. The aim of this study is calculation of absorbed dose from scatt...

متن کامل

Dosimetric characteristics of active solid state detectors in a 60 MeV proton radiotherapy beam

The solid state active detectors, widely used for conventional radiotherapy, such as diamond detectors (DD) and diodes may be attractive tools also in dosimetry of therapeutic proton beams. Diodes are broadly applied in oncology clinics and routinely used for in-vivo dosimetry [1, 8]. These real-time detectors are rugged, relatively inexpensive and provide on-line readings, what allows for quic...

متن کامل

A New Colorimetric Azo-azomethine Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode: Real-life Applications

Four novel receptors were designed and synthesized for colorimetric detection of F− ions. The introduction of four electron withdrawing groups into the backbone of the receptors makes the two phenolic groups efficient hydrogen bonding sites. The binding properties of receptors with anions were examined for the first time by UV–Vis, 1H NMR and fluorescence spectroscopies. The addition of F− resu...

متن کامل

Some steps towards establishing a tertiary standard dosimetry laboratory at a radiotherapy department

Background: In order to deliver the precise dose to the target in radiotherapy, absorbed dose to water at the reference point should be assessed. When the calibration procedure is performed for a reference dosimeter in the 60Co beam of a Secondary Standard Dosimetry Laboratory (SSDL), the total uncertainty in absorbed dose to water (Dw) is estimated to be approximately 1.5%. This study attempts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2018